[5] B. Donaldson, Z. Lateef, G. F. Walker, S. L. Young, and V. K. Ward, “Virus-like
particle vaccines: immunology and formulation for clinical translation,” Expert Rev.
Vaccines, vol. 17, no. 9, pp. 833–849, Sep. 2018, doi: 10.1080/14760584.2018.1516552
[6] B. D. Hill, A. Zak, E. Khera, and F. Wen, “Engineering virus-like particles for
antigen and drug delivery,” Curr. Protein Pept. Sci., vol. 19, no. 1, pp. 112–127,
Nov. 2017, doi: 10.2174/1389203718666161122113041
[7] A. Roldao, M. C. Mellado, L. R. Castilho, M. J. Carrondo, and P. M. Alves, “Virus-
like particles in vaccine development,” Expert Rev. Vaccines, vol. 9, no. 10,
pp. 1149–1176, 2010, doi: 10.1586/erv.10.115
[8] D. Yan, Y.-Q. Wei, H.-C. Guo, and S.-Q. Sun, “The application of virus-like
particles as vaccines and biological vehicles,” Appl. Microbiol. Biotechnol., vol. 99,
no. 24, pp. 10415–10432, Dec. 2015.
[9] B. C. Bundy, M. J. Franciszkowicz, and J. R. Swartz, “Escherichia coli-based cell-
free synthesis of virus-like particles,” Biotechnol. Bioeng., vol. 100, no. 1,
pp. 28–37, May 2008, doi: 10.1002/bit.21716
[10] N. Kushnir, S. J. Streatfield, and V. Yusibov, “Virus-like particles as a highly ef-
ficient vaccine platform: Diversity of targets and production systems and advances
in clinical development,” Vaccine, vol. 31. pp. 58–83, 2012, doi: 10.1016/
j.vaccine.2012.10.083
[11] M. W. O. Liew, A. Rajendran, and A. P. J. Middelberg, “Microbial production of
virus-like particle vaccine protein at gram-per-litre levels,” J. Biotechnol., vol. 150,
no. 2, pp. 224–231, 2010, doi: 10.1016/j.jbiotec.2010.08.010
[12] J. M. Cregg et al., “High–level expression and efficient assembly of Hepatitis B
surface antigen in the methylotrophic Yeast, Pichia Pastoris,” Nat. Biotechnol., vol.
5, no. 5, pp. 479–485, May 1987, doi: 10.1038/nbt0587-479
[13] J. Fuenmayor, F. Gòdia, and L. Cervera, “Production of virus-like particles for
vaccines,” Nat. Biotechnol., 2017, doi: 10.1016/j.nbt.2017.07.010
[14] L. Durous, M. Rosa-Calatrava, and E. Petiot, “Advances in influenza virus-like
particles bioprocesses,” Expert Rev. Vaccines, vol. 18, no. 12, pp. 1285–1300, Dec.
2019, doi: 10.1080/14760584.2019.1704262
[15] M. J. Betenbaugh, N. Tomiya, S. Narang, J. T. A. Hsu, and Y. C. Lee, “Biosynthesis
of human-type N-glycans in heterologous systems,” Curr. Opin. Struct. Biol., vol.
14, no. 5, pp. 601–606, 2004, doi: 10.1016/j.sbi.2004.09.001
[16] J. L. Hye, K. K. Yeon, S. H. Dong, and J. C. Hyung, “Expression of functional
human transferrin in stably transfected Drosophila S2 cells,” Biotechnol. Prog., vol.
20, no. 4, pp. 1192–1197, Aug. 2004, doi: 10.1021/bp034375a
[17] L. Cervera, F. Gòdia, F. Tarrés-freixas, C. Aguilar-gurrieri, and J. Carrillo,
“Production of HIV-1-based virus-like particles for vaccination: achievements and
limits,”Appl. Microbiol. Biotechnol. 103, pp. 7367–7384, 2019. https://doi.org/10.1
007/s00253-019-10038-3
[18] H. G. Göttlinger, HIV-1 Gag: a Molecular Machine Driving Viral Particle
Assembly and Release. Los Alamos, New Mexico: Los Alamos National
Laboratory, Theoretical Biology and Biophysics, 2001.
[19] J. Votteler and W. I. Sundquist, “Virus budding and the ESCRT pathway,” Cell Host
Microbe, vol. 14, no. 3, pp. 232–241, Sep. 2013, doi: 10.1016/j.chom.2013.08.012
[20] L. X. Doan, M. Li, C. Chen, and Q. Yao, “Virus-like particles as HIV-1 vaccines,”
Rev. Med. Virol., vol. 15. pp. 75–88, 2005, doi: 10.1002/rmv.449
[21] C. Zhao, Z. Ao, and X. Yao, “Current advances in virus-like particles as a vacci-
nation approach against HIV infection,” Vaccines, vol. 4, no. 1, pp. 2, 2016, doi:
10.3390/vaccines4010002
260
Bioprocessing of Viral Vaccines